

Wheel Mass to Body Ratio

by Erik Waelchli

The Questions

One Unit of Wheel Weight is "worth" how much Body Weight?

- Internet research reveals claims of ratios from 2 to 10 times!
- Are these figures for real?
- What are the factors that influence this ratio?

The Wheel-Rim Mass Radius

The need for a simple model

$$I = m \times r^2$$

 Concentrate the wheel mass to the "Mass Radius"

$$r_R = \sqrt[2]{I_{wheel}/m_{wheel}}$$

Physics & "The Relationship"

$$m_B / m_R = 1 + r_R^2 / r_T^2$$

i.e. the Mass-Ratio

or
$$m_B = m_R \times (1 + r_R^2/r_T^2)$$

or
$$m_R = m_R / (1 + r_R^2/r_T^2)$$

Numerical Limits and Ranges

$$m_B / m_R = 1 + r_R^2 / r_T^2$$

- Minimum Limit
- Maximum Limit

- $m_B/m_R = 1.0$
- $m_R/m_R = 2.0$
- Typical Range for Wheels $m_B / m_R =$ dependant on aspect ratio of tire

$$m_B / m_R = 1.2 ... 1.5$$

"Rotating-to-Body Mass Ratio" Comparison with different Tire Aspect Ratios

Vehicle		Corvette	Camaro	Cadillac STS	Pass-Car	Silverado	Pass-Car	Hummer H3
Rim		18 x 8.5	20 x 8	18 x 8	J14 x 5.5	J8 x 18	J14 x 5.5	16 x 7.5
Tire		P245/40ZR18	P245/45ZR20	P235/50ZR18	P185/60R14	P265/65R18	P185/70R14	P265/75R16
Aspect Ratio		40%	45%	50%	60%	65%	70%	75%
Tire Rolling Radius	mm	306.9	330.4	325.7	271.7	376.5	289.5	377.9
Wheel-Rim Mass Radius	mm	196.6	218.4	196.6	152.9	196.6	152.9	174.8
Mass Ratio = $1 + R_p^2 / R_{\tau}^2$	[-]	1.41	1.44	1.36	1.32	1.27	1.28	1.21

The interesting Weight is Outside

		Original	Outer Section	Inner Section	
Inertia	1	138,783	128,938	137,302	kg-mm²
Wheel Mass	m_{R}	5.86	5.61	5.61	kg
Delta Wheel Mass	dm_R		0.250	0.250	kg
Mass Radius Tire Radius	r_R	153.9	151.6	156.44	mm
	r_{T}	266	266	266	mm
Ratio	m _B /m _R	1.335	1.325	1.346	[-]
Wheel Mass ref Delta equiv. Bo	•	7.82	7.43 0.389	7.55 0.271	
%-age Gain to	delta Whe	el Mass	55.7%	8.4%	

The Answers

How much more is One Unit of Wheel Weight "worth" than Body Weight is influenced by:

- Where the Weight is on the Wheel
 - How far away is the wheel-mass from the wheel's rotational axis
- Aspect Ratio of the Tire
 - How far way is the wheel-mass from the road
- Typical Wheel-Mass-to-Body Ratio $m_B/m_R = 1.2$ to 1.6
 - Possible Mass Gains from 20% to 60%

 i.e. (factors of > 2 are false!)

for Feedback and Questions contact

Erik Waelchli www.IBDConnection.com +1 (574) 621 0096

52037 Woodridge Dr. South Bend, IN 46635 USA